God used Beautiful Maths to creating the world.

The Intimate Relation between Mathematics and Physics


Physics and mathematics have always enjoyed a close relationship, beginning in the Renaissance with Johannes Kepler's (1571-1630) 1609 discovery of the three laws of planetary orbits.




In 1687 Isaac Newton (1642-1727) introduced the theory of gravity. 





James Clerk Maxwell (1831-1879) was able to unify the forces of electricity and magnetism in 1865 with the theory of electromagnetism. In the twentieth century mathematical theories from the fields of geometry were instrumental in constructing Albert Einstein's (1879-1955) theory of general relativity as well as in the later development of superstring theory. 
All of these theories have been predicated upon the prior development of mathematical techniques that had been invented for pure and applied purposes.
In the late seventeenth century Isaac Newton could not have developed the theory of gravity without calculus, a set of mathematical techniques he had developed for studying rates of change. (Calculus was also developed independently by the German mathematician and physicist Gottfried Leibniz (1646-1716.) The definition of gravity underwent another significant revision in 1916 when Albert Einstein showed that gravity could be interpreted as curvatures of space and time.
t Einstein could never have developed his theory, now called general relativity, without the non-Euclidean geometry developed by the German mathematician Bernhard Riemann (1826-1866). Riemann's geometry system, developed in 1854, was able to handle descriptions of space where curves predominate and all lines must eventually meet. This was an entirely new way of describing space that the 2000-year-old Euclidean system could not handle.

In the twentieth century several scientists, including Niels Bohr (1885-1962) and Erwin Schrödinger (1887-1961), developed quantum mechanics, which describes the structure of atoms with great precision. Quantum mechanics deals with the microscopic world by treating particles as both particles and waves. Mathematics became increasingly important to physicists during the latter half of the twentieth century, usually because the physical objects under investigation were inaccessible to experimental physics. These objects are as large as black holes and as small as the tiny strings and branes of superstring theory.

Comments

Popular posts from this blog

Einstein & Gravitational Waves.....The Genius

The Dangerous Ratio

Love Story of Physics & Maths